From Simple to Easy

Andrew Cotter

[©NoIel

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Acknowledgements

Thesis Advisors:
Aya Karpinska
Loretta Wolozin
Jesse Harding

Chris Prentice

Special Thanks:

Victoria Hackett

Ramsey Nasser

Sarah Groff Henneigh-Palermo
Zach Lieberman

Justin Bakse

Bryan Ma

Nick Montfort

Abstract

In programming education, students are often first introduced to the simplest concepts of a
language before more complex topics. Their initial understanding of data types is applied to
understand logic statements, which then abstract up into functions and classes. This
approach is often referred to as the 'Procedure-First' method. This problem with this
approach arises from a semantic misunderstanding of the difference between 'simple' and
'easy.’ Definitionally, something simple is irreducibly complex, meaning that it can't be broken
down further. Conversely, something easy is familiar or ready-at-hand. In this way, the
progression from simple to complex isn't necessarily congruent to the progression of easy to
hard. In this way, what is complex in programming can be easier to understand than what is
simple. This is also in line with how people learn many other processes. If you want to teach
someone how to drive a car, you don't start with the lower levels of machinery like the
carburetor, you start from the highest level of abstraction: the steering wheel. This method of
teaching programming is known as the '"Model-First' approach.

Grokking Creative Code aims to test and apply the Model-First approach as an online book of
tutorials with interactive sketches, which can help independent learners advance from a post-
beginner skill level into an intermediate level. | have been testing this method by showing the
tutorials I've written to fellow students. Before and after they go through the tutorial, they
describe how they would approach the problem that the lesson addresses. Although an
imperfect method of evaluation, this is how I've been able to gauge the relative degrees in
confidence and understanding that they've gained. With this feedback in hand, my ambition is
to thoughtfully implement the Model-First method of teaching, help popularize the method,
and promote its broad application to other levels of creative coding.

Table of Contents

1. Introduction
1. The Journey of Learning Creative Code
2. Pain Points for Students
3. The Procedure-First Method
4. The Model-First Method
5. Grokking Creative Code
2. Domains & Precedents
1. What's Out There - Freestanding Resources
2. Beginner & Procedure-First
3. Advanced & Procedure-First
4. Beginner & Model-First
5. Advanced & Model-First
6. Existing Creative Coding Tools
7. Finding a Niche
3. Methodology
1. TheAlgorithmic Sketchbook
2. Model-First Pong
3. User Feedback
4. Evaluation
1. Future Milestones
2. ATruly Model-First Framework
3. Conclusion

5. Appendix

Introduction

The Journey of Learning Creative Code

In my experience of learning creative coding, there was a two-year span of time in which | was
feeling like | wasn't getting better at programming. My level of skill was past that of a
beginner, but still below what would be considered 'intermediate.' During this plateau, | was
spending a lot of my time unlearning what | thought | knew about programming. | had been
introduced to functional and object-oriented programming by then, but | was still working in
the mindset of procedural programming, trying to solve problems just with variables and if
statements. It wasn't until my second reading of The Nature of Code by Dan Shiffman that |
had really started to internalize what object-oriented programming was about.

STARTED LEARNING CLOTURE

N

STARTED A 2ND
DEV INTERNSHIP

\
\

RE-READ THE NATURE OF CODE

PROGRAMMING ABILITY

\

STARTED INTERNING 80OTCAMP

AS A DEVELOPER

FINISHED FIRST
PROGRAMMING CLASS

\

i

READ THE NATURE OF CODE

204 2015 2016 2017

Fig. 1 My Person progression of learning programming over the last five years

This is a process that many of my peers also went through as well. In my practice of
programming both in professional and educational environments, | have consistently noticed
that many of my peers reach a plateau in skill and understanding for an extended period of
time. Typically, students and independent learners at this level have also begun to touch
functional and object-oriented code like | had, but still don't have a full understanding of
classes or more abstract structures of software.

Pain Points for Students

The length of this is process of going from beginner to intermediate is due in part to a lack of
resources that target that skill level. While there are many learning resources that target
complete beginners and people who have been programming for many years, there are very
few books or courses aimed at people who are in the liminal space between.

In my interview with Sarah Groff Hennigh-Palermo, a self-taught programmer and Engineer at
Kickstarter, she recounted to me many of the pain points which exist in the documentation of
languages and frameworks. As she described it, many bodies of documentation for languages
or frameworks just focus on giving a concise description of what each function or class does
discretely, falling short of describing how those functions and objects collate together into a
cohesive workflow or process.

The Procedure-First Method

Furthermore, the difficulty | and my peers have been experiencing is due to the shortfalls of
learning within the framework of a Procedure-First pedagogical approach. Although this
method has been widely used in engineering and computer-science courses, | don't believe it
serves people coming from an arts or creative background.

Structurally, the Procedure-First approach first presents students with the simplest parts of a
programming language (variables, if statements) before proceeding to the more complex and
abstract parts of a programming language (functions and objects). However, as students
progress up the ladder of abstraction, they also have to discard parts of what they thought
they knew about programming. This is because most of the concepts at the imperative level of
code don't necessarily scale up to the systematic levels of programming.

For example, a common challenge given to beginner programmers is the “fizz-buzz”
challenge, which has students count up to 100 and print “fizz” if a number is divisible by 3 and
“buzz” if it is divisible by 5. This tests the student’s understanding of booleans and loops.

Typically, the next challenge step up from there for creative coding is something like a particle
system. This involves making a Particle class with a position, speed, and velocity, then storing
several instances of the particle in an array and looping through them to update their
positions. This requires an understanding of vectors, some physics, and how to manage
arrays.

The understanding required for these tasks have almost nothing in common, and as a result,
the simpler and more trivial assignments given to beginner students is almost detrimental

This progression from simple to complex is also not the same as a progression from easy to
hard. In his 2011 talk, Simple Made Easy, computer scientist and progenitor of Clojure Rich
Hickey makes an insightful distinction between the two:

"So the first word is simple. And the roots of this word are sim and plex, and that means one
fold or one braid or twist. The other word we frequently use interchangeably with simple is
the word easy. And the derivation there is to a French word ... which means to lie near and to
be nearby."

What Rich is getting at is that simple concepts are irreducible (or at least less reducible) and
easy concepts are familiar and at least partly known already. In this way, teaching someone
how to drive a car with the procedure first method would start from the chemistry of
hydrocarbons and slowly work up to the steering wheel and the gas pedal.

int X =0; int sum(a, b) while(7 < 10) module foo()
{ { {
return a + b; i++; init();
} } update();
draw();

Fig. 2 Comparing the elements of programming to the elements of driving.

While this progression might be useful to an engineer or mechanic, it's not an expedient way
to learn how to drive if all you want to do is pick something up at the grocery store.
Furthermore, if this were the only method of learning to drive, the only people who would
drive cars would be engineers and mechanics.

To address this, | am writing a series of online interactive lessons and video tutorials aimed at
people stuck in this post-beginner / pre-intermediate stage. Specifically, | am aiming to fill the
pedagogical niche between bodies of work like Daniel Shiffman's The Coding Train, which
targets beginners in creative coding, and works for intermediate programmers like The Book
of Shaders by Patricio Gonzalez-Vivo. | am further differentiating my work by implementing a
Model-First approach of teaching.

The Model-First Method

The Model-First method is defined by teaching a concept by starting with a wholistic and
abstracted overview of how something works, then chunking out the concept into parts until
the instructions have drilled down to the simplest level. In programming this usually involves
looking at the entire problem objective, modeling and describing how it works, then finally
translating that model into code, using the model as a framework or outline.

(END GOAL / SOLUTION |

COMPONENT COMPONENT COMPONENT

SUBCOMPONENT SUBCOMPONENT

SUBCOMPONENT R \
PROCEDURE | PROCEDURE PROCEDURE - p—— PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

Fig. 3 The structure of the Model-First Method

In Programming in Context - A Model-First Approach to CS1, authors Jens Bendeson and
Michael E. Casperson define the Model-First approach as:

. Instructing the computer: The programming language is viewed as a high-level machine language. The
focus is on aspects of program execution such as storage layout, control flow and persistence. In the
following we also refer to this perspective as coding.

. Managing the program description: The programming language is used for an overview and understanding
of the entire program. The focus is on aspects such as visibility, encapsulation, modularity, separate
compilation.

. Conceptual modelling: The programming language is used for expressing concepts and structures. The

focus is on constructs for describing concepts and phenomena.

In much the same way as Bendeson and Casperson outline, my tutorials begin by showing an
example of a finished project, define the project in terms of its constituent elements,
describes the qualities and behaviors of those elements, then translate those elements into
classes that can be written in code.

Through writing, testing, and refining these tutorials, | am seeking to develop a successful
implementation of the Model-First method that can properly bridge the gap between
beginner and intermediate creative coding.

Grokking Creative Code

http://thatcotter.github.io/thesis

In my current iteration of the project, the non-linear nature of the website is relational among
the tutorials rather than among the modules and submodules of the tutorials themselves. The
tutorials are structured around three tentpole concepts. In the book, they are referred to as
"space, time, and form," but these are amicable stand-in terms for "linear algebra,
concurrency, and data architecture."

The tutorials are also structured in a non-linear fashion. There is no 'first' chapter or lesson to
read past the introduction, and they can be completed in any order. All of the concepts
addressed in the lessons are of a similar difficulty level and any minor pre-requisites from

http://thatcotter.github.io/thesis

other lessons can be easily linked to easily. This also meant that | had to assume a post-
beginner level of familiarity with programming since | wouldn't be dedicating any material to
covering topics like syntax.

The key to breaking up the tutorials in this way was to not make the learner start from scratch.
In most other programming tutorials, the reader/viewer is given a blank canvas at the
beginning, which slowly builds up to the finished product. However, this process often means
that many corollary problems need to be solved on the way to the primary problem or
concept the tutorial is trying to get to. The tutorials in my current iteration give the reader a
pre-existing project which needs to be altered in some way. In this way, the reader can focus
on fewer problems per tutorial without having to think about them in a vacuum.

These tutorials were also accompanied by interactive live-code sketches that the student
could edit and observe in real time. In this way, the student is able to work in a tighter
feedback loop and see what they're doing as they're doing it.

Domains & Precedents

What's out there - Freestanding Resources

In my investigations of existing resources that target the teaching of math and programming
creatively (or, conversely, the teaching of creativity formally)

ADVANCED

GL PROGRAMMING GUIDE l

BOOK OF SHADERS

j w“a
KLEE & KANDINSKY > ' -
ELOQUENT
PROCEDURE e HoDEL
CAT-LIKE CODING il
Iz

ELOQUENT

JAVASCRIPT EXPORATORY
PROGRAMMING
<

CODING TRAIN | I

pEe]
-cadem POETIC COMPUTATION ;
codelc y PAPERT/L0GO READER, TAEYOON CHOI | ‘
CODE ACADEMY VI HART
BEGINNER

Fig. 4-1 A Qualitative map of some exemplar learning resources for learning programming, from
procedure-first to model-first and beginner to advanced.

Beginner & Procedure-First

In the bottom-right, there are a few exemplars of beginner resources that at procedure first.
Codeacademy is the lowest-lying fruit for this essay to critique, as it is a resource which
merely teaches the syntax of a programming language without teaching anything in the realm
of programmatic problem-solving or thinking about the systems or workflow outside of that
syntax. It's just learning to code, not learning to program software. There are similar resources

in this corner like programming bootcamps, which can extend a little higher and to the right in
this grid, but are still largely localized in this corner.

Seymour Papert, his programming language LOGO, and related learning resources like
Scratch, are examples of works that have tried to move the needle on the practice of just
teaching syntax and representing the semantics of programming visually. As a drawing tool,
LOGO operates with the metaphor of moving a turtle with a pen around the screen. Users are
able to input commands like "right" and "left" to turn the turtle a specified number of
degrees, "penup" and "pendown" for the turtle to raise and lower the pen from the ground,
and "forward" to have the turtle move a specified distance.

T

forward 50 right 90 forward 50 right 90
forward 50 right S0 forward 50 right S0

@ 2000 Logo Foundation

Fig. 5 An example of a turtle graphics program in LOGO

While this does help the user learn how to make instructions for the computer, the highest
level of abstraction that the environment offers is the "repeat" command, which lets the user
create loops

Zachtronics' games like Infinifactory, and their derivatives like Minecraft's Redstone
mechanics, offer something a little further along the spectrum towards a model-first

approach by giving players an idea of what the end solution space looks like and the ability to
spatially manipulate the mechanisms that they design. In Zachtronics' TIS-100, or Opus
Magnum, players are given a goal, and a system of tools with which to get to that goal.
Furthermore, each new mechanic is matched a relatively non-trivial challenge in the level that
introduces it. However, this is still ultimately a bottom-up approach, as many games tutorials
are actually several pages worth of pdf documentation of the syntax of the puzzle systems
that the player is solving.

NODE TYPE T21 - BASIC EXECUTION NODE

1. Architecture
e Basc Barcurion

£ he Toend Lciigence Sy

1-4. LEFT, RIGHT, UP, DOWN

Type: o

INCLUDES A PDF OF THE TIS-100 REFERENCE MANUAL

Fig. 6 Gameplay and promotional screenshots from the Steam Store listing of TIS-100

https://store.steampowered.com/app/370360/TIS100/

Advanced & Procedure-First

OpenGL Programming Guide (also colloquially referred to as "The Red Book") is a similar sort
of low-lying fruit to critique as Code Academy. The book is written in a vocabulary which
assumes the reader is an engineer, or is in the process of earning a Computer Science degree.
Furthermore, the actual content merely covers a prescriptive "how" to program specific parts
of OpenGL without much concern for the reasoning of why or a description of what
possibilities are achievable. These questions of why and what are largely offloaded onto the
reader to determine.

As a good counterpoint, The Book of Shaders by Patricio Gonzalez-Vivo has a vocabulary well-
crafted for artists coming to lower-level graphics programming from the vantage of creative
coding. In the first few pages, Patricio goes over the high-level concepts of what shaders are,
why they are used, and how programming them is different than more conventional single-
threaded programming with tools like Processing.

The Catlike Coding series by Jasper Flick fits squarely into the procedure-first category, but
also gives readers the ability to skip around through different tutorials and sections based on
the reader's interest. The actual verbiage of the tutorials is also very attentive, and provides
footnotes based on questions that Jasper predicts that the reader might have. In this way, the
layout of ideas becomes less linear and more explorable.

Fig. 7 screenshot of the tutorial overviews and links from Catlike Coding

http://catlikecoding.com/unity/tutorials/

The Pedagogical Sketchbook and Point and Line to Plane were included in this domain lineup
because they informed a precursory project to Grokking Creative Code. In both works, the
authors are reasoning about the creative practice of art in a way that could almost be
described as "computational" or "mathematical." Both start from points as a unit of drawing
and work up from there, working through the visual semantics of drawing. Although | didn't
have the vocabulary for it at the time, their works both present a procedure-first approach to

drawing.

o®

I. @ The same line, droumscribing itself (Fig. 4)

@ Fig # \Q
An active line on a walk, moving freely, without goal. A walk for a
walk's sake. The maobility agent, is a poirt, shifting its position forward
(Fig. 1)
N Two secondary lines, moving around an imaginary main line (Fig. 5)

g1 " /!?ZWMW

The same line, accampanied by camplementary foms (Figs. 2 and 3)

Fig. 8 The first two pages from The Pedagogical Sketchbook

Klee's work was also brought up by Zach Leiberman - developer of open frameworks and co-
founder of The School For Poetic Computation (SFPC) - in one of my office hours interviews
with him. Because of The Pedagogical Sketchbook's procedure-first approach to art, it loaned
itself well to his class "Re-creating the Past," which focuses of using tools like
openFrameworks to reverse-engineer the aesthetic and composition of older works that
embody a systematic style of thinking.

Beginner & Model-First

The Coding Train by Dan Shiffman is one of the most comprehensive exemplars for model-first
teaching; especially its series of weekly coding challenges. In the coding challenge tutorials,
Dan completes a creative coding sketch in Processing or p5.js. Each tutorial is about twenty
minutes long, and in the first few minutes, Dan shows the viewer both what the end goal looks
like, and what problems need to be solved to get there. Because the videos are also live-
streamed, viewers are also offered a chance to see Dan's thought process and contingencies
for finding and resolving errors in his code when things go awry. One of the strengths and
weaknesses of The Coding Train is the relatively low ceiling of difficulty to its content. This
means that there are few outliers which would exclude Shiffman's audience, but that also
means that there isn't a clear runway into the content past what he is teaching.

wwwwwwwwwww

previous([i

1

/ pr—
/] }

//}

previous[100][100] = 255; N

nnnnnnnnnn

draw() {

background(0);

loadPixels();

for (int i = 1; i < cols-1; 1i++) {
for (j = 1; j < rows-1; j++) {

Area

Fig. 9 Screenshot of Dan Shiffman from Coding Challenge #102: 2D Water Ripple

https://youtu.be/BZUdGqeOD0w

In Tayeoon Choi's The Poetic Computation Reader, the audience gets a general overview of the
history of computation and how it shadows a concurrent history of art. One of the standout
features of the book is its use of footnotes to create a non-linear experience for the reader. In
this way, the reader can explore topics laterally based on their interest to dig further into
particular footnotes. This makes the book much more lattice-like in structure and encourages
the reader to be curious and seek out more information when they are curious.

Although not directly about programming, Vi Hart's youtube channel presents math concepts
in a fun way. In the channel's Doodling in Math Class series, Vi begins each video with "Say
you're me and you're in math class..." before doodling in their notebook to distract theirself.
Before long, Vi Hart's doodling leads into the math concepts that they were avoiding. In this
way, their way of explaining these concepts start from concrete problems like "how do | draw
the best spirals?" or "how do | make the squiggliest line?" In each exploration, Vi is working
backwards from the leading question and discretizing it into a logical system, making their
work a perfect exemplar of the model-first approach.

1.5 -

e ._N " 0"‘”51’3‘,

M.u T"AN .

Fig. 10 screenshot from Doodling in Math Class: Dragons

https://www.youtube.com/watch?v=EdyociU35u8

ADVANCED

T -
BOOK OF SHADERS \
W,
KLEE & KANDINSKY ['
ELOQUENT
PROCEDURE JavascrIPr
CAT-LIKE CODING $ 4;
Gor
™

ELOQUENT
JAVASCRIPT

[code]cademy

CODE ACADEMY

PAPERT/LOGO

BEGINNER

?2?9?

EXPORATORY

PROGRAMMING
27

CODING TRAIN

‘

POETIC COMPUTATION
READER, TAEYOON CHOI |

VI HART

Fig. 4-2 A Qualitative map of some exemplar learning resources for learning programming, from
procedure-first to model-first and beginner to advanced. Areas of opportunity are highlighted.

Advanced & Model-First

In this compilation of resources, | found that the upper-right quadrant of this domain space
was relatively lacking. There are only a couple of works which felt like they could be partly
placed here, and even then, there are some detractors which could disqualify them from

being where they are.

Eloguent JavaScript does a good job of conceptualizing how javaScript works and how to
make the best use of it. Each chapter and section approach hypothetical problems with a
given topic in hand as a solution. However, the overall arc of the book still follows a procedure
first approach; first covering variables and logic statements before getting into functional and

object-oriented programming.

Nick Montfort's Exploratory Programming operates under the two key values of "programming
as inquiry" and "programming as a practice.” Montfort’s notion of ‘practice’ is fairly
straightforward; like the practice of the violin or painting, programming should also be
practiced. What is more interesting is his notion of inquiry. Here, Montfort means that he
wants the reader to continue from his lessons and “learn in whatever specific domains are
interesting and compelling.” In this way, Exploratory Programming and The Poetic
Computation Reader One relatively minor shortcoming of the work is the lack of any
visualizations or illustrations throughout the book to help the reader conceptualize of the
problems and tutorials that they're working through.

Existing Creative Coding Tools

Similarly, | also surveyed the available tools for creative computation. As tools become more
model-first, they also tend to become less open-source. This makes sense, as the more
model-first tools here require more people to maintain them.

OPEN-SOURCE ~_ — — — — — -

Ty)
pTNE o ! 2?7
Cfga\“@ p5 \ (44

® |
oF ~_ - /

+ OPENFRAMEWORKS

A 1 e
PROCEDURE CiNDER E’EH RALCHERRFRSED @ MODEL
W - or

UNREAL

MAX

UNITY

CLOSED-SOURCE

Fig. 11 A qualitative map of existing creative coding frameworks and game engines based on
their qualities of being open/closed-source and procedure/model-first

This again leaves a large quadrant open to new tools, aside from Godot, there aren't many
tools that can exist in the open-source space sustainably. Given how young Godot is, it will be
interesting to see if it can stay in this space, or even thrive. Addressing a gap in tools though is
a much larger undertaking than addressing a relatively unpopulated corner of the landscape
of learning resources.

Finding a Niche

With that understanding of the gaps and underserved areas in existing learning materials for
creative coders, it has been my aim to make a series of tutorials that extend into the model-
first space, and past the beginner level. In this way, | am in essence designing a learning
resource for my past self when | was having difficulty progressing past the beginner level.

Methodology

The Algorithmic Sketchbook

The first iteration of my project was a short series of tutorials / loose musings on creative
coding based on a computational reading of Klee and Kandinsky. Because both artists have a
procedure-first approach to art, | thought that they would be a good window to help other
artists and creatives approach coding.

The poetic way in which Klee would imagine a line as "a dot that went for a walk" loaned a
quality of playfulness to a well-structured framework of expression. Conversely, Kandinsky
had a view of form that seemed much more mathematical and proof driven: "The geometric
point is an invisible thing... Considered in term of substance, it equals zero." Both books have
a fascinating cascade of concepts which arise into comprehensive treaties on the visual
semantics of drawn forms.

However, this iteration was still a procedure-first approach to One of the strengths of starting
from what's simple is that, simple concepts are also generalizable. However, the downside to
generalization is abstraction. This is not to say that simplicity doesn't matter, but rather that
starting from what is simple and abstract can alienate many students.

The most successful part of the project was a live p5 editor which updated programs in real
time, and gave users instant feedback on what they were changing. In testing, the students |
showed the website to were really excited to play around with the examples provided, but still
didn't feel confident in making a p5 sketch from scratch. This is probably due mostly to the
fact that I was still giving readers a procedure-first method of learning, which wasn't helping
them get past the syntax and imperative mindset and into the semantic and systemic
mindset.

Model-First Pong

After my investigation into model-first pedagogy as previously described by Bendeson and
Casperson, | then wrote a pong tutorial based on my findings. The goal was to make the
tutorial non-linear and broken up into modules which were self-similar to a model of a game
of pong: three primary elements (a ball, two paddles, a scoreboard) broken up into their key
properties and behaviors.

Paddles

Pong

sssssssssssssssss

Fig. 12 & 13 Screenshots from the Model-First Pong Tutorial

| was hoping that the structure of this tutorial would give readers a much more wholistic and
top-down view of what they were working on. This exact approach had mixed success,
however.

One of the key pieces findings from this iteration was that the tutorials were too non-linear.
Navigationally, many users found it too much of a hassle to go back and forth within the same
tutorial. In addition, this may have done more harm than good in helping them grasp the
relationship between the content in each submodule.

User Feedback

This has led to my current iteration of Grokking Creative Code. Throughout each draft of the
project, the component of live-coding has remained constant, but | feel confident that | have
started to approach an appropriate balance between linear and non-linear tutorial structures
in a model-first framework.

To test these tutorials, I've asked students/learners to first talk through or diagram how they
would go about solving a problem before and after they one of my tutorials on the same
subject. Typically, testers would have an idea of what resources they might look up, or how
they might begin to solve the problem in a higher-level environment like Unity3D, but didn't
know where to begin as far as writing down the code, or what functions/classes they would
write.

After reading the tutorial, the testers would have much more realized ideas of how to solve the
problems | asked them, citing which processes they would use and diagramming out how the
parts of their program would fit together.

For example, before showing a tester a tutorial about frame-independent animation, | asked
them how they would make an animation run at the same speed regardless of the frame rate.
At first, they started to pseudocode out their thoughts: "What if | made a counter? Then
iterated it in the draw loop? And progress the animation based on that counter?" As they
fleshed out this idea, they realized that they were still falling into the pattern of frame-
dependent animation.

|

Fig. 14 Documentation from user feedback session

//WHAT IF | MAKE A COUNTER? | INDENTIFY WHICH VARIBLES

VAR COUNTER; CHANGE THE ANIMATION

2. STORE THE CURRENT TIME AND
//THEN ITERATE IT THE PREVIOUS FRAME'S TIME
//IN THE DRAW LOOP? 3. CONVERT FROM MILLISECONDS
COUNTER++: Y, CHANGE OTHER VALUES BASED

ON THE DELTA TIME

Fig. 15 Transcribed Notes from the same user feedback session

A while after the student went through the tutorial, | asked them to conceptualize of the
problem again. This time, they had a clear, step-by-step process of how they would go about
it. Although the way they wrote out their thoughts was not in pseudo-code, it betrayed a more
fundamental understanding of how the problem worked, and how the tools they had (in this
case p5js) could address it.

This shift in thinking through the problem was an encouraging initial finding, and one | would
like to be able to replicate in future lessons.

Evaluation

Going forward, | want to keep building out this body of tutorials that | have begun to sow. |
have started laying the bricks for what is to come, but the final result is still somewhat
uncertain, pending future user testing of what explanations make sense, and how non-linear |
can make the flow of the lessons while still making them navigable. These are at least the two
challenges that | can see going forward as | continue to foster this book.

Future Milestones

Ayear out from now, | expect to have reached a point of saturation with this body of work. By
then, the Space section should provide a good overview of linear algebra (or at least a good
visual intuition for it). This would impart concepts in 2D and 3D animation by digging deeper
into the mechanics of vector and matrix math.

The Time section will be able to help a reader make their own animation library for p5.js. This
progression is inspired from the structure of Zach's Algorithmic Animation course as he
described it to me in our office hours meeting. His class was intended to teach students
techniques for animating with code, and over time helping those techniques coalesce into a
full library that the students could re-use or share.

The Form section will give readers a general understanding of Model-View-Control structures
of code and some design patterns. This will be the section of the book most focused on
helping the reader understand the wider context of systemic reasoning in programming by
helping the reader model larger programs which manage multiple discrete tasks or sub-tasks.

I will also have a better idea as to which way to take my tutorials in terms of demographics.
Although it should be possible to continue to drive the difficulty level up to more advanced
topics, its also feasible to curb-cut the difficulty down to a neophyte reader. Both options offer
compelling challenges, but it may be a more worthwhile test of the model-first paradigm to
see how it makes contact with a complete beginner who has not yet internalized the syntax of
any programming language.

As | reach these milestones, | also plan on making the tutorials a bit more non-linear, letting
readers explore asides and footnotes laterally based on their curiosity. For example, since
many of the Space tutorials will incorporate linear algebra, it might be a good idea to make
independent pages about vector maths. These pages can be linked to from tutorial pages that

touch upon these concepts so that the reader may establish or refresh their understanding of
the content.

HOME PAGE

/

'SD)) S
OO TUTORIAL | —> COMPONENT | —> ‘CONPONENT —> | RecAp
OO0 INTRO

% 4

2 — ¥ .
5 |COMPONENT | _s | COMPONENT | —> | COMPO ENT‘ —9(RECAP
) .

TUTORIAL
INTRO

Fig. 16 Intended workflow of the Grokking Creative Code Website when it is complete

After reaching this milestone, | will be able to distill and synthesize some as-yet-unknown key
takeaways to apply to my next goal: Creating a model-first tool for creative coding which can
be sustainably open-sourced.

A Truly Model-First Framework

As pointed out earlier, there are already model-first tools for creative coders. However, these
tools are all proprietary and closed-source, the notable exception being Godot*.

OPEN-SOURCE

(.

NE
‘{ﬁP\T\
CCQD\\“G

—_—
—

/

—_

~

N\

p5°| | 797 \

N /
® - __ |

PATCHER-BASED

OF

+ OPENFRAMEWORKS

PROCEDURE CiNDER

e UNREAL

\L MAX
UNITY

CLOSED-S0URCE

Fig. 11 A qualitative map of existing creative coding frameworks and game engines based on
their qualities of being open/closed-source and procedure/model-first

In short, my goal for now is to use what | have learned from teaching and writing to make a
tool informed by those pedagogies. And as it looks now, that tool or framework which will be
derived from this project will probably inhabit that space. This is because I do not find it
satisfactory for a tool to be model-first without being open-source. Although model first tools
should start from direct manipulation and chunking of information, they must also make the
user curious, and encourage them to explore into the the inner workings of the tool that they
are using. This simply isn't possible if the source code is unavailable.

Because of this, | want to use what | have and will learn from this project to make a new tool
to contribute to the space of model-first and open-source frameworks for creative coding.

To fund the initial production of this endeavor, | will be seeking out a fellowship or arts
residency at organizations like Eyebeam, the Mozilla Foundation, or the Processing
Foundation. These organizations are all attractive possibilities for their values of being open-
source, inclusion-minded, and often creativity-focused.

Conclusion

From my initial research through to my initial testing of tutorials, it is apparent to me that the
Model-First approach will gradually become the new standard, if not the progenitor of a new
emerging standard of programming education for learners with goals outside of an
engineering or computer science program. While an engineering mindset has its utility, it also
has its time and place.

In Creative Coding, problems often do not share an impetus or a size of scope in tandem with
the more commercially common forms of development. Because of this, approaching a
creative coding problem with an engineering mindset can even be detrimental to the project,
letting the developer over-architect and over-scale their work before they even start.

Additionally, Creative Coding is not just about making products, although its certainly allowed
to be. Creative Coding as a form of expression is also about opening up the world

The world outside of proper computer science is both vast and varied, and the programming
resources available should reflect that. It is my desire to continue to contribute to this frontier,
further enriching the space of creative coding.

*Of course, in the time it will take for me to reach my intended inflection point, Unity or the Unreal Engine could
surprise me and become open-sourced. Godot could also take off in popularity and become wildly successful
without moving to a proprietary model. There could also be an entirely new agent which is introduced to this
field which is everything | would have been aiming to make.

Works Cited

“2: How Experts Differ from Novices.” How People Learn: Brain, Mind, Experience, and School,
by John D. Bransford, National Acad. Press, 2004.

Barth, Zach. “Zachtronics.” Zachtronics, www.zachtronics.com/.

Bennedsen, Jens, and Michael E. Caspersen. “Programming in Context - A Model-First
Approach to CS1.” Association for Computing Machinery, 3 Mar. 2004, www.cs.au.dk/~mec/
publications/conference/08--sigcse2004.pdf.

“About.” Codecademy, www.codecademy.com/about.

Gonzalez Vivo, Patricio. “The Book of Shaders.” The Book of Shaders, thebookofshaders.com/.

Hickey, Rich. “Simple Made Easy.” InfoQ, www.infog.com/presentations/Simple-Made-Easy.

Flick, Jasper. “Unity C# and Shader Tutorials.” Catlike Coding, catlikecoding.com/unity/
tutorials/.

Klee, Paul, and Sibyl Moholy-Nagy. Pedagogical Sketchbook. Faber and Faber, 1981.
Montfort, Nick. Exploratory Programming for the Arts and Humanities. The MIT Press, 2016.

Jackson, Daniel, and Rob Miller. “A New Approach to Teaching Programming.” Psychology of
Programming Interest Group, vol. 18, 2006, pp. 255-265., pdfs.semanticscholar.org/1c75/
fdob1815ec77995aa3ed9da6b180bfleb78e.pdf.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. Basicbooks, 1980.

Reas, Casey. “Thoughts on Software for the Visual Arts - Processing Foundation - Medium.”

Medium, Processing Foundation, 1 Feb. 2017, medium.com/processing-foundation/thoughts-
on-software-a8a82c95elad.

Sajaniemi, Jorma, and Chenglie Hu. “Teaching Programming: Going beyond ‘Objects First.”
Psychology of Programming Interest Group, vol. 18, Sept. 2006, pdfs.semanticscholar.org/
1c75/fd0b1815ec77995aa3ed9da6b180bfleb78e.pdf.

Shehane, Ronald, and Steven Sherman. “Visual Teaching Model for Introducing Programming

Languages.” Journal of Instructional Pedagogy, vol. 14, Mar. 2014, files.eric.ed.gov/fulltext/
EJ1060073.pdf.

Shiffman, Daniel. “The Coding Train.” YouTube, YouTube, www.youtube.com/user/shiffman.

Vihart. “Doodling in Math Class: DRAGONS.” YouTube, YouTube, 19 Aug. 2013,
www.youtube.com/watch?v=EdyociU35u8.

Appendix

Website Pages

Intro

(0-0) WHO IS THIS BOOK FOR?
(0-1) HOW THIS BOOK IS ORGANIZED
(0-2) IN CASE YOU LIKE FOREWARDS AND ARTIST STATEMENTS

(0-3) GETTING STARTED WITH P5JS

Space

——

Time

" g
L

Form

Who is this series for?

This body of work is intended for people who have started programming, but aren't quite sure how to get from beginner to intermediate. The goal of this project is to be the "best

second resource" for learning creative coding after Daniel Shiffman's The Coding Train and before Patricio Gonzalez Vivo's The Book of Shaders.

By now, you've already gotten the hang of procedural programming: stuff like ' if |, else , while , for ,and basic data types. You've also probably been exposed to functions

and objects at least once, but maybe you haven't quite gotten the hang of that yet.
Maybe you also still don't feel comfortable making a whole new program from scratch, and instead rely on finding examples to jump off of. This series of tutorials and lessons is made
to help you think about the structure of and logic of a program, so it doesn't feel so intimidating when you dive into the code. The tutorials are broken up by their components so that

you can ostensibly complete them in any order before tying them all together.

If you've gotten into creative code, you're also pretty familiar with p5.js. If you've used p5, Processing, or openFrameworks, you'll feel right at home here. If you think you need a

refresher, check out Hello p5 to get started. There's also a lot of great tutorials on getting started over at The Coding Train

As you go through the tutorials, take your time to read through the explainations. Programming concepts can be unintuitive at times and they don't come to you all at once, so don't

expect to just skim through and get it right away.

Copyright © Andrew Cotter 2017 - 2018

Setting up P5.js

I youre new to the workflow of pS s, a ot of the drawing fuctions should look familiar if you're coming from Processing or openFrameworks (e.g. rect() and elipse()). What might not
look so familiar s the workflow. This is just a quick guide to help get you familiar with what a pS project looks like and how it might be structured.

WHAT IS P52

In essence, pS is a javascript library that lets you make a canvas on a web page and draw on it. p5 also has a lot of libraries which lets you access web apis, interact with the DOM on
your webpage, and work with text inputs.

DOWNLOADING P5.JS

Fortunately, there's very litle that we need to download or install to set pS set up. All we need to do s go to pSis.org/download and click the link that says "Complete Library". This
gives you a zip fle which you can extract into a folder that looks like this:

LT (= addons B
¥ ps.zip [empty-example >
B psis

p5.min.js

The first folder has the optional addons for pS, the javascript files at the bottom have the core code for the p5 library, and the "empty example folder”

[addons » € index.html

Bl empty-example [0 M sketch.js

B psis

B p5.min.js
Inside that folder we'l find the two files that you'll usually be working with on smaller p5 projects; | index himi | and | sketchs
But before we start working with these fils, lots duplicate them and name the copy.

MAKING A NEW SKETCH

I you're working on a bigger, more professional project, you probably wouldn't use the method I'm prescribing now. In fact, you might not be using pS at all. But since p5 uses the
heuristic of a 'sketchbook, we'll lean into that, and treat each project folder like a page in our own personal sketchbook.

To do 5o, lets duplicate the | emply-example _ folder and rename it something appropriate to the project we're working on. Since we're familiarizing ourselves with p5, lets callt | hello-
s

[addons » @ index.html
[] empty-example » B sketch.js
B psijs

B ps.min.js

Now lets open up the folder inside your text editor of choice. (If you don't have a favorite text editor, might | suggest Visual Studio Code?) Before we startin on the | sketehjs _ file, lets
ook at whats going on inside the | index.ntmi | file. It should look something like this.

<IDOCTYPE him>
<im
<head>
<meta name="Viowpor” widih=device widlh, nla scale=1.0, maximurnscale=1.0, usor scalable=0>

So you might have noticed that there isn't a lot going on here, at least not in the | <body> | of the page. Everything here is about tying the javascript fles that we have together and
running them using the | <script> | tag.

Now let's look at the | sketchjs | file.

functon setup) |

1 put setup code here
)

functon draw() {

11 put drawing cod here

)

As the comments suggest, the | setup() | 100p runs only once, and the | draw() | loop runs continuously. This is where we'l be adding code for many of the examples in this book.

Typically, the first thing you need to do in a p5 sketch is add a canvas to the page. We do this by calling the function | createCanvas() | and passing in the | x | and y dimensions
of the canvas. So if we wanted to make a canvas that is 400 by 300 pixels, we'd write

functon setup()
¢
createCanvas(400, 300)
)
Alternatively, if we wanted to make the canvas the size of the browser window, we can write:
functon setup)

createCanvas(wincowWid, windowHeight)
)

I you need to brush up on the p5 AP, there's a lot neat examples and refences on the p5 site.

2D Camera

So lets say you're helping a friend make a 2D platiormer game. They're a little new at this, so they're getting a bit stuck. They
have a few things already made, like the player, the ground, the inputs, and they even imported Matter js to take care of the

physics
The first thing we should do is take a look at their game and see how it's working. Try interacting with the game a bit, and read
through the code that they've written. If you need to restart the game, try editing the code to refresh the canvas. If you feel like
you've made a mistake in the code, you can also use command+Z or ctrl+Z to undo your changes.

WAIT, WHAT'S MATTER.JS AGAIN?

If Matter.js is altogether alien to you, it might be worth opening up the documentation or looking through the examples. There's
also a good tutorial series on The Coding Train on how to use Matter.js with p5. Your friend doesn't want to spend all day
thinking about how to implement physics, so they just settled for using a physics library instead.

Arrow keys: Left / Right

Spacebar: Jump

Jet engine:
let world;

let player.
let ground;
ock

function setup()

helght-50

World.add(wori, [ground, block])

The aesthetics of the game could use some polish, but your firend isn't really looking for feedback on that, and they can always
improve that later anyway. You might have noticed a bigger problem with this game though: it's pretty small. Only the size of

the game window, in fact

"How do | make the level bigger?" your friend might ask. Well, we could simply add more elements outside of the canvas so

the player box doesn't fall off into infinity, but that's not really what they're asking here, is it? Their real question is:

HOW MIGHT | SEE MORE OF THIS WORLD AS THE PLAYER MOVES
AROUND IT?

Lets take a moment to reflect on this. In p5, everything is drawn in relation to the origin point (0,0). By default, this is in the top

left of the canvas.

origin illustration here

This means, in order to see other parts of the game, we'll have to move the

What's more, we need to move the origin
in relation to the player so that it stays on the screen. So in order to emulate a camera that is following the player along, we'll
need to do both of these

IN SUMMARY:

* In order to see more of the game, we need to move the origin

« Inorder to keep the player on the screen, we need to make the origin movements relational to the player object

Moving the Origin
TRANSLATE()

As you lraady know, the orgin position (0.0) s afthe fop left of the p5 canvas. Here's a skelch with a red circle drawn

atthe argin o lusirat.

Bt the cool thing at

coordinates that its being drawn at

ut vansiatel) | is that we can the

To do tis, call | ransite() | with two arguments. The firs is how the origin moves along the x-axi, and the second argument
controls how the orign moves along the y-axis. By using the arguments | widin2, heighi2 | the Gircls can move to the center.

BUT WHAT ABOUT PUSH() AND POP()?

These funclons act as bookmarks' of a sort for the | ransiae() | funclon. When | pushy | executes, p5 s

embering wi

the orgin was when the _pusni) funclion was called. | popy _ then reverts the orign back to where _pusn) | recorded Ifs

3 pushg | and | popd) . Inthe example above, using them
isn't necessary, bt it comes in handy i you

nt 1o do & whole bunch of transiatons in & row.

ANIMATE THE TRANSLATION

The amout of translation that the origin doss can also be amiated over time, e so:

By passing the | ramsCount | (the number of frames that the program has completed) into the | sin) | and _cos() | functons,

we can make of i)

WHY ARE YOU MULTIPLYING THE FRAMECOUNT BY A SMALL NUMBER,
AND THE RESULT OF SINE/COSINE BY A LARGER NUMBER?

“This largoly has to do with the scalo of | sin) | and cos() s inputs. Bocause thelrinputs aro intorprotod as radians (from 0 o

about 6.28) counting i full inrements would rosult n a very ast animation of the translation. (Waybe, you wani thal, but for

most thal can be a il over-stimulaing. Sine and Cosine always relurn valuss thal are between -1 and 1, 5o in order (o

makethe area in which the circle moves larger, the resullng value is mulilied by a larger number.

NEXT STEPS

Now that youte a litle moro famifar with doing maix ransformations by using _ransiate) , youro roady o start making a

camera for your fend.

Making the Camera

Okay, before you start making a camera class, let's go over what it needs to do frst.
A 2D CAMERA NEEDS TO:

« move the origin to see the game world

« keep track of the player object's position

The first part we already have a pretty good idea of how to do. We can use | translate() to move the origin around, but making
an object that just translates could be a litle tricky. Remember the | push() | and | pop() | functions? The canvas could get
messy really fast f you don't revert the matrix when the camera is done, so you'll need those too. Because it would be hard to
import the draw loop into a camera object, we'll need separate functions for when the camera transformation begins and
ends.

With that in mind, the first task breaks down even further

« move the origin to see the game world
« save the origin position using | push()
« | transiate() | the origin based on a given value

« revert the origin back to its default position using | pop()
This means that you'll need to make a function where the transformation value updates.

Based on these requirements, we can begin to ouline a class that looks like this:

class Camera

constructor()
update()(}
begin(()
endgp

The | constructor() | and the | update() | functions can be made later when you start making the camera follow the player. For
now, you just need to add | push() and transiate() to the begin(| function, and put a translation value in the
constructor. At this point, the value that you pass it is arbitrary, since you'll relate it to the player object's position later.

class Camera
(
constructor()
{
this transiation = createVector(0, 0)
}
update()(
begin()
{
push)
transiatethis transiation.x, tis ranslation.y)
}
end)
i
Pop()

Now that you have your camera class started, let's make an instance of it in our game. First, we make a variable for our

camera with | letcam; |, then we callit's constructor in the setup loop with | cam = new Camera()

Finally, you can add the | cam.begin() | and | cam.end() | functions before and after drawing the other objects in our scene.

hisransiaior

et Enging - MatterEngin
Zater e

Try playing around with the X value of the camera's | this.translation | property and see how the canvas changes. If you're

feeling fancy, why not try | sin(trameCount) | to animate the translation?

When you're ready to move on, we can add the player-following behavior to the camera.

Following the Player

WAIT, THE TRANSLATION IS GOING THE WRONG WAY!

FrameRate

MAKING AN ANIMATION FOR A CLIENT

Let's say that you're working on an animation for a client. They wanted an animated canvas that loops. So far, you have this:

75,1, hagn0.25, coor(z
eight.5)

1, height0 25, coor(
ieta, amp,

o)
cogments -

et magnt
o (

(
magniude - (cos((¥0.026)+702)+1)" 05 *
)
= crealoVector(* 5. magniude)
- croate 5,0)

(.5 (magritucelamp))

The trouble is, the client just informed you that this animation might be running on older hardware, so it has to run at 30 frames

per second. Fortunately, you can just use the | frameRate() | function in the setup loop to fix that

framerate(30)

crcatoGanvas(windonWidth, windowHolght)
ramoRato

neight
.75, neignt
vansite(0, hight.5)

1, height0.25,color(12

et magat
o
magniude:

)

«
magniuge - (co8((F0 025140 2)+1)" 05 * amp +
)
= et 25, magniude)
i — croatoVector(* 25,0)

dlamond(np.p,5*(magniudolams)

OH NO, IT'S TOO SLOW NOW!

You changed the framerate from 60 to 30, but now the animation plays half as fast. This is because the animation that's being
done is frame-dependent. That means that the speed of change in the animation is directly proportional to the framerate of
the canvas. That means we'll need to use the rate in change of time rahter than the rate in change of frames. This will make
the animation run the same way, regardless of the frames per second (FPS) that the sketch runs at.

THE FASCINATING PROBLEM OF PROGRAMMATIC ANIMATION

This is one of the more interesting challenges of doing animations with In software

context, time is a much less interesting issue. If you're writing a server or the backend of an application, the main challenge
you need to solve for is getting the program to run as quickly as possible. That isn't to say making a program run as quickly as
possible can't be a rewarding challenge, meerly that its a much more linear and monotonic challenge than what we're trying to
do.

SUMMARY
In short, in order to make the animation frame-independent, we need to:
o track what time it is each frame

« compare the change in time between frames

« use the change in time to influence the theta

Timeline Class

SETTING UP THE CLASS
Okay, lets set up a class that do all of the tasks we just outlined.

This tutorial is going to name the class 'Timeline' since more animation functionality will be added to it in future tutorials.
class Timeline()

Since the object only needs to compare two points in time (the current frame and the previous frame), it'll need to store those

two values.

class Timeline
{
constructor()
{
this.now
this.then

GETTING THE CURRENT TIME

Conveniently, javascript has a native method for getting the time: = Date.now() . This returns the numer of milliseconds since
January 1st, 1970. Why 19707 It's mostly boring reasons having to do with UNIX, which you can read more about here, if
you're curious.

ASIDE: PERFORMANCE.NOW()

There's also | performance.now() if you want to get a more precise timestamp value, but you probably don't need it for this

tutorial.
UPDATING THEN AND Now
Cool, so now that you know what method will get you the time, it time to put it to use!

Start by adding it to your constructor, then you can make an update function to reassign the values.

class Timeline
{
constructor()
{
this.now = Date.now()
this.then
}
update()
{
this.then = this.now
this.now = Date.now()

DELTA TIME

Great! Now that there's a | then | and | now being recorded, the difference between them (or the delta) can be found. All you

have to do is make a function that subtracts | then | from ' now

class Timeline
{
deltaTime()
{
return this.now - this.then

Now you're ready to start integrating this with the rest of the animation!

Integrating the Timeline

INTEGRATING .DELTATIME()

Now let's add a Timeline object to the animation and replace the | frameCouni() _logic with | deliaTime()

uncton setup()
croatoCanvas(windowWidh, windowHagh)
frameRate(:0)

mTime - now Timeine(

backgrounal2
mTime upaate()

L= mTime geiar
transiate(widt0.125, height

a

08((10.025)40.2)41)" 05

" - createVector(* 25, magniude)

BUT NOW THE ANIMATION IS WAY TOO FAST!

Oh no! Now the animation is going much faster than it was before. This is because when | frameCount®0.01 | was being used,
theta was increasing by about 0.02 each frame. now that | deftaTime _ is being used, it's increasing by about 32 (at 30 FPS)
each frame. That's because 32 milliseconds have elapsed since the last frame.

RETURNING SECONDS INSTEAD OF MILLISECONDS

The solution to this is to convert the deltaTime to miliseconds. This can be done by simply dividing the deltaTime value
returned by 1000. You could divide each call to | deliaTime() |, but itll probably save you more time in the long run to add that
division to the Timeline function

deltaTime()
(
return (this.now - this then) * 0,001

From there, you can scale up the speed of the animation by multiplying | deitaTime() | before adding itto | t . The decision on
how much to multiply the deltaTime by is a matter of aethetics and personal preference (and the preference of your
hypothetical client).

t+= mTime detaTime() * 5

functon setup()
0
createCanvas(windowWidih, windowHegh)
ramaRate(
mTime = new Timeine()

uncton cra()

t+=mTime dofiaTime()*
ransiate(widin0. 25, hight
" 10,75, . neight

)

245,0, 128),
hegnt

for(1= gments; ++)

let magnituce -

Great! Now the animation will run at the same speed, regardless of its framerate. Try changing the | framerate() | in the setup
loop, and see how the animation plays out when you change the argument passed in.

Slideshow

SHOWING OFF YOUR WORK

Lets say that youre going to an open-miciopenprojector event n your area to show oftsome of the smallr projects and
Skelches youlve been working on. The trouble i, when you pracics presenting, you have to keep siching between your sie

dock soma way to add 1 made to th sldsshov.

O, wait! What i and added into the

That mighttake a ot of c from your sldes

lots just put some of theso placohaldors

——

Tharkpousioe

Asfort off, heres a fow pla o s

WHAT WE NEED

Siides thatcan oncapsulato the behavior o cach or your skeiches that you want o present
+ One type of sice that s statc fextimage)

Another type of sids thatis animated (95 sketches)

A container for all of your sices

‘Something that keeps track of where you are i the sidoshow

Holds a variabl for your place inthe sideshow

+ Away o change which side i being shown

Slide Classes

Modeling the State

Okay, now that there are slide classes set up, we need away to keep track of them. After all, we can't call the draw method of
every siide every frame. For one, we would only ever see the last slide, and all of those draw calls would certainly slow down
your program.

WHAT WE NEED:

« Anarray containing all of our slides
« Avariable that keeps track of which siide needs to be shown
« Away toto forward and back in the slideshow based on user inputs

With that in mind, lets outline the constructor and method of the Model class:

class Mode!

constructor({
hissices
hisatate

)

setun)]

gtinput())

nox()

back()

)

CONSTRUCTOR
So Model has to keep track of the slides, and which one to show. This means that the slides have o be passed in as an

array, and the state needs to start on the first slide.

constructor(sides) fate, youl pass an array o this argument

thissides = lides e array wi then be assigned 1 this.sides

SETUP

Since all of the siides in | tis.slides | need to run their setup loops. You could just use a regular for loop to go through all your
slides:

setupl)
‘
for (ot = 0 < s Jength; f++)
«
sidesf elup)

But it might be a lttle more neat and compact if you use a | forof | loop:

setupl)
[
for (ot i of this.sldos)

side sotupl)

DRAW

Now that you have an array of slides, you can use the state of your model to determine which side is drawn.

aran()

i sices[his.statel drav)

Because | this.state | s initially zero, the next behavior you'll need is

BACK AND NEXT

‘The methods that manipulate _thisstate | are pretty straightforward: increment or decrement the state, but don't go past the
first orlast slides.

next)

¢
(s state < tis sides length-1)
tisstatoes

back)

s state > 0)
thisstate-

GETINPUT

Now that you have methods to change the state, now you need a funcion to call them based on key inputs.

gelinpul(input)

switch(keyCodel(
case 37l arow
his back()
break

case 39:/hight arow
thisnext)
break

Putting it all together

Cool! Now you have a model to handle your slides. All you need to do now is to bring it into your sketch

let myModel; //make a variable to store your model in
let sketch1 = {};
let sketch2 = {};
let sketch3 = {};

function setup() {
reateC i indowHeight)

defineSketches() //

let titleOptions = {
"header": "HELLO, WORLD!",
"subHeader": "subtitle”,

}

let titleSlide = new StaticSlide(titleOptions)

let endOptions = {
"header": "Thanks! ()"
}
let endSlide = new StaticSlide(endOptions)
myModel = new Model(titleSlide,
sketch1,
sketch2,
sketch3,
endSlide])
for (slide of myModel.slides) {
slide.setup()

DRAWING

function draw() {
myModel.draw()
}

INPUT

function keyPressed(){
myModel.getinput(keyCode)
}

