
From Simple to Easy
Andrew Cotter

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License. 

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Acknowledgements

Thesis Advisors:

Aya Karpinska

Loretta Wolozin

Jesse Harding

Chris Prentice

Special Thanks:

 Victoria Hackett

Ramsey Nasser

Sarah Groff Henneigh-Palermo

Zach Lieberman

Justin Bakse

Bryan Ma

Nick Montfort

Abstract
In programming education, students are often first introduced to the simplest concepts of a
language before more complex topics. Their initial understanding of data types is applied to
understand logic statements, which then abstract up into functions and classes. This
approach is often referred to as the 'Procedure-First' method. This problem with this
approach arises from a semantic misunderstanding of the difference between 'simple' and
'easy.' Definitionally, something simple is irreducibly complex, meaning that it can't be broken
down further. Conversely, something easy is familiar or ready-at-hand. In this way, the
progression from simple to complex isn't necessarily congruent to the progression of easy to
hard. In this way, what is complex in programming can be easier to understand than what is
simple. This is also in line with how people learn many other processes. If you want to teach
someone how to drive a car, you don't start with the lower levels of machinery like the
carburetor, you start from the highest level of abstraction: the steering wheel. This method of
teaching programming is known as the 'Model-First' approach.

Grokking Creative Code aims to test and apply the Model-First approach as an online book of
tutorials with interactive sketches, which can help independent learners advance from a post-
beginner skill level into an intermediate level. I have been testing this method by showing the
tutorials I've written to fellow students. Before and after they go through the tutorial, they
describe how they would approach the problem that the lesson addresses. Although an
imperfect method of evaluation, this is how I've been able to gauge the relative degrees in
confidence and understanding that they've gained. With this feedback in hand, my ambition is
to thoughtfully implement the Model-First method of teaching, help popularize the method,
and promote its broad application to other levels of creative coding.

Table of Contents

1. Introduction

1. The Journey of Learning Creative Code

2. Pain Points for Students

3. The Procedure-First Method

4. The Model-First Method

5. Grokking Creative Code

2. Domains & Precedents

1. What's Out There - Freestanding Resources

2. Beginner & Procedure-First

3. Advanced & Procedure-First

4. Beginner & Model-First

5. Advanced & Model-First

6. Existing Creative Coding Tools

7. Finding a Niche

3. Methodology

1. The Algorithmic Sketchbook

2. Model-First Pong

3. User Feedback

4. Evaluation

1. Future Milestones

2. A Truly Model-First Framework

3. Conclusion

5. Appendix

Introduction
The Journey of Learning Creative Code
In my experience of learning creative coding, there was a two-year span of time in which I was
feeling like I wasn't getting better at programming. My level of skill was past that of a
beginner, but still below what would be considered 'intermediate.' During this plateau, I was
spending a lot of my time unlearning what I thought I knew about programming. I had been
introduced to functional and object-oriented programming by then, but I was still working in
the mindset of procedural programming, trying to solve problems just with variables and if
statements. It wasn't until my second reading of The Nature of Code by Dan Shiffman that I
had really started to internalize what object-oriented programming was about.

Fig. 1 My Person progression of learning programming over the last five years

This is a process that many of my peers also went through as well. In my practice of
programming both in professional and educational environments, I have consistently noticed
that many of my peers reach a plateau in skill and understanding for an extended period of
time. Typically, students and independent learners at this level have also begun to touch
functional and object-oriented code like I had, but still don't have a full understanding of
classes or more abstract structures of software.

Pain Points for Students
The length of this is process of going from beginner to intermediate is due in part to a lack of
resources that target that skill level. While there are many learning resources that target
complete beginners and people who have been programming for many years, there are very
few books or courses aimed at people who are in the liminal space between.

In my interview with Sarah Groff Hennigh-Palermo, a self-taught programmer and Engineer at
Kickstarter, she recounted to me many of the pain points which exist in the documentation of
languages and frameworks. As she described it, many bodies of documentation for languages
or frameworks just focus on giving a concise description of what each function or class does
discretely, falling short of describing how those functions and objects collate together into a
cohesive workflow or process.

The Procedure-First Method
Furthermore, the difficulty I and my peers have been experiencing is due to the shortfalls of
learning within the framework of a Procedure-First pedagogical approach. Although this
method has been widely used in engineering and computer-science courses, I don't believe it
serves people coming from an arts or creative background.

Structurally, the Procedure-First approach first presents students with the simplest parts of a
programming language (variables, if statements) before proceeding to the more complex and
abstract parts of a programming language (functions and objects). However, as students
progress up the ladder of abstraction, they also have to discard parts of what they thought
they knew about programming. This is because most of the concepts at the imperative level of
code don't necessarily scale up to the systematic levels of programming.

For example, a common challenge given to beginner programmers is the “fizz-buzz”
challenge, which has students count up to 100 and print “fizz” if a number is divisible by 3 and
“buzz” if it is divisible by 5. This tests the student’s understanding of booleans and loops.

Typically, the next challenge step up from there for creative coding is something like a particle
system. This involves making a Particle class with a position, speed, and velocity, then storing
several instances of the particle in an array and looping through them to update their
positions. This requires an understanding of vectors, some physics, and how to manage
arrays.

The understanding required for these tasks have almost nothing in common, and as a result,
the simpler and more trivial assignments given to beginner students is almost detrimental

This progression from simple to complex is also not the same as a progression from easy to
hard. In his 2011 talk, Simple Made Easy, computer scientist and progenitor of Clojure Rich
Hickey makes an insightful distinction between the two:

"So the first word is simple. And the roots of this word are sim and plex, and that means one
fold or one braid or twist. The other word we frequently use interchangeably with simple is
the word easy. And the derivation there is to a French word ... which means to lie near and to
be nearby."

What Rich is getting at is that simple concepts are irreducible (or at least less reducible) and
easy concepts are familiar and at least partly known already. In this way, teaching someone
how to drive a car with the procedure first method would start from the chemistry of
hydrocarbons and slowly work up to the steering wheel and the gas pedal.

Fig. 2 Comparing the elements of programming to the elements of driving.

While this progression might be useful to an engineer or mechanic, it's not an expedient way
to learn how to drive if all you want to do is pick something up at the grocery store.
Furthermore, if this were the only method of learning to drive, the only people who would
drive cars would be engineers and mechanics.

To address this, I am writing a series of online interactive lessons and video tutorials aimed at
people stuck in this post-beginner / pre-intermediate stage. Specifically, I am aiming to fill the
pedagogical niche between bodies of work like Daniel Shiffman's The Coding Train, which
targets beginners in creative coding, and works for intermediate programmers like The Book
of Shaders by Patricio Gonzalez-Vivo. I am further differentiating my work by implementing a
Model-First approach of teaching.

The Model-First Method
The Model-First method is defined by teaching a concept by starting with a wholistic and
abstracted overview of how something works, then chunking out the concept into parts until
the instructions have drilled down to the simplest level. In programming this usually involves
looking at the entire problem objective, modeling and describing how it works, then finally
translating that model into code, using the model as a framework or outline.

Fig. 3 The structure of the Model-First Method

In Programming in Context – A Model-First Approach to CS1, authors Jens Bendeson and
Michael E. Casperson define the Model-First approach as:

• Instructing the computer: The programming language is viewed as a high-level machine language. The
focus is on aspects of program execution such as storage layout, control flow and persistence. In the
following we also refer to this perspective as coding.

• Managing the program description: The programming language is used for an overview and understanding
of the entire program. The focus is on aspects such as visibility, encapsulation, modularity, separate
compilation.

• Conceptual modelling: The programming language is used for expressing concepts and structures. The
focus is on constructs for describing concepts and phenomena.

In much the same way as Bendeson and Casperson outline, my tutorials begin by showing an
example of a finished project, define the project in terms of its constituent elements,
describes the qualities and behaviors of those elements, then translate those elements into
classes that can be written in code.

Through writing, testing, and refining these tutorials, I am seeking to develop a successful
implementation of the Model-First method that can properly bridge the gap between
beginner and intermediate creative coding.

Grokking Creative Code
http://thatcotter.github.io/thesis

In my current iteration of the project, the non-linear nature of the website is relational among
the tutorials rather than among the modules and submodules of the tutorials themselves. The
tutorials are structured around three tentpole concepts. In the book, they are referred to as
"space, time, and form," but these are amicable stand-in terms for "linear algebra,
concurrency, and data architecture."

The tutorials are also structured in a non-linear fashion. There is no 'first' chapter or lesson to
read past the introduction, and they can be completed in any order. All of the concepts
addressed in the lessons are of a similar difficulty level and any minor pre-requisites from

http://thatcotter.github.io/thesis

other lessons can be easily linked to easily. This also meant that I had to assume a post-
beginner level of familiarity with programming since I wouldn't be dedicating any material to
covering topics like syntax.

The key to breaking up the tutorials in this way was to not make the learner start from scratch.
In most other programming tutorials, the reader/viewer is given a blank canvas at the
beginning, which slowly builds up to the finished product. However, this process often means
that many corollary problems need to be solved on the way to the primary problem or
concept the tutorial is trying to get to. The tutorials in my current iteration give the reader a
pre-existing project which needs to be altered in some way. In this way, the reader can focus
on fewer problems per tutorial without having to think about them in a vacuum.

These tutorials were also accompanied by interactive live-code sketches that the student
could edit and observe in real time. In this way, the student is able to work in a tighter
feedback loop and see what they're doing as they're doing it.

Domains & Precedents
What's out there - Freestanding Resources
In my investigations of existing resources that target the teaching of math and programming
creatively (or, conversely, the teaching of creativity formally)

Fig. 4-1 A Qualitative map of some exemplar learning resources for learning programming, from
procedure-first to model-first and beginner to advanced.

Beginner & Procedure-First
In the bottom-right, there are a few exemplars of beginner resources that at procedure first.
Codeacademy is the lowest-lying fruit for this essay to critique, as it is a resource which
merely teaches the syntax of a programming language without teaching anything in the realm
of programmatic problem-solving or thinking about the systems or workflow outside of that
syntax. It's just learning to code, not learning to program software. There are similar resources

in this corner like programming bootcamps, which can extend a little higher and to the right in
this grid, but are still largely localized in this corner.

Seymour Papert, his programming language LOGO, and related learning resources like
Scratch, are examples of works that have tried to move the needle on the practice of just
teaching syntax and representing the semantics of programming visually. As a drawing tool,
LOGO operates with the metaphor of moving a turtle with a pen around the screen. Users are
able to input commands like "right" and "left" to turn the turtle a specified number of
degrees, "penup" and "pendown" for the turtle to raise and lower the pen from the ground,
and "forward" to have the turtle move a specified distance.

Fig. 5 An example of a turtle graphics program in LOGO

While this does help the user learn how to make instructions for the computer, the highest
level of abstraction that the environment offers is the "repeat" command, which lets the user
create loops

Zachtronics' games like Infinifactory, and their derivatives like Minecraft's Redstone
mechanics, offer something a little further along the spectrum towards a model-first

approach by giving players an idea of what the end solution space looks like and the ability to
spatially manipulate the mechanisms that they design. In Zachtronics' TIS-100, or Opus
Magnum, players are given a goal, and a system of tools with which to get to that goal.
Furthermore, each new mechanic is matched a relatively non-trivial challenge in the level that
introduces it. However, this is still ultimately a bottom-up approach, as many games tutorials
are actually several pages worth of pdf documentation of the syntax of the puzzle systems
that the player is solving.

Fig. 6 Gameplay and promotional screenshots from the Steam Store listing of TIS-100

https://store.steampowered.com/app/370360/TIS100/

Advanced & Procedure-First
OpenGL Programming Guide (also colloquially referred to as "The Red Book") is a similar sort
of low-lying fruit to critique as Code Academy. The book is written in a vocabulary which
assumes the reader is an engineer, or is in the process of earning a Computer Science degree.
Furthermore, the actual content merely covers a prescriptive "how" to program specific parts
of OpenGL without much concern for the reasoning of why or a description of what
possibilities are achievable. These questions of why and what are largely offloaded onto the
reader to determine.

As a good counterpoint, The Book of Shaders by Patricio Gonzalez-Vivo has a vocabulary well-
crafted for artists coming to lower-level graphics programming from the vantage of creative
coding. In the first few pages, Patricio goes over the high-level concepts of what shaders are,
why they are used, and how programming them is different than more conventional single-
threaded programming with tools like Processing.

The Catlike Coding series by Jasper Flick fits squarely into the procedure-first category, but
also gives readers the ability to skip around through different tutorials and sections based on
the reader's interest. The actual verbiage of the tutorials is also very attentive, and provides
footnotes based on questions that Jasper predicts that the reader might have. In this way, the
layout of ideas becomes less linear and more explorable.

Fig. 7 screenshot of the tutorial overviews and links from Catlike Coding

http://catlikecoding.com/unity/tutorials/

The Pedagogical Sketchbook and Point and Line to Plane were included in this domain lineup
because they informed a precursory project to Grokking Creative Code. In both works, the
authors are reasoning about the creative practice of art in a way that could almost be
described as "computational" or "mathematical." Both start from points as a unit of drawing
and work up from there, working through the visual semantics of drawing. Although I didn't
have the vocabulary for it at the time, their works both present a procedure-first approach to
drawing.

Fig. 8 The first two pages from The Pedagogical Sketchbook

Klee's work was also brought up by Zach Leiberman - developer of open frameworks and co-
founder of The School For Poetic Computation (SFPC) - in one of my office hours interviews
with him. Because of The Pedagogical Sketchbook's procedure-first approach to art, it loaned
itself well to his class "Re-creating the Past," which focuses of using tools like
openFrameworks to reverse-engineer the aesthetic and composition of older works that
embody a systematic style of thinking.

Beginner & Model-First
The Coding Train by Dan Shiffman is one of the most comprehensive exemplars for model-first
teaching; especially its series of weekly coding challenges. In the coding challenge tutorials,
Dan completes a creative coding sketch in Processing or p5.js. Each tutorial is about twenty
minutes long, and in the first few minutes, Dan shows the viewer both what the end goal looks
like, and what problems need to be solved to get there. Because the videos are also live-
streamed, viewers are also offered a chance to see Dan's thought process and contingencies
for finding and resolving errors in his code when things go awry. One of the strengths and
weaknesses of The Coding Train is the relatively low ceiling of difficulty to its content. This
means that there are few outliers which would exclude Shiffman's audience, but that also
means that there isn't a clear runway into the content past what he is teaching.

Fig. 9 Screenshot of Dan Shiffman from Coding Challenge #102: 2D Water Ripple

https://youtu.be/BZUdGqeOD0w

In Tayeoon Choi's The Poetic Computation Reader, the audience gets a general overview of the
history of computation and how it shadows a concurrent history of art. One of the standout
features of the book is its use of footnotes to create a non-linear experience for the reader. In
this way, the reader can explore topics laterally based on their interest to dig further into
particular footnotes. This makes the book much more lattice-like in structure and encourages
the reader to be curious and seek out more information when they are curious.

Although not directly about programming, Vi Hart's youtube channel presents math concepts
in a fun way. In the channel's Doodling in Math Class series, Vi begins each video with "Say
you're me and you're in math class…" before doodling in their notebook to distract theirself.
Before long, Vi Hart's doodling leads into the math concepts that they were avoiding. In this
way, their way of explaining these concepts start from concrete problems like "how do I draw
the best spirals?" or "how do I make the squiggliest line?" In each exploration, Vi is working
backwards from the leading question and discretizing it into a logical system, making their
work a perfect exemplar of the model-first approach.

Fig. 10 screenshot from Doodling in Math Class: Dragons

https://www.youtube.com/watch?v=EdyociU35u8

Fig. 4-2 A Qualitative map of some exemplar learning resources for learning programming, from
procedure-first to model-first and beginner to advanced. Areas of opportunity are highlighted.

Advanced & Model-First
In this compilation of resources, I found that the upper-right quadrant of this domain space
was relatively lacking. There are only a couple of works which felt like they could be partly
placed here, and even then, there are some detractors which could disqualify them from
being where they are.

Eloquent JavaScript does a good job of conceptualizing how javaScript works and how to
make the best use of it. Each chapter and section approach hypothetical problems with a
given topic in hand as a solution. However, the overall arc of the book still follows a procedure
first approach; first covering variables and logic statements before getting into functional and
object-oriented programming.

Nick Montfort's Exploratory Programming operates under the two key values of "programming
as inquiry" and "programming as a practice.” Montfort’s notion of ‘practice’ is fairly
straightforward; like the practice of the violin or painting, programming should also be
practiced. What is more interesting is his notion of inquiry. Here, Montfort means that he
wants the reader to continue from his lessons and “learn in whatever specific domains are
interesting and compelling.” In this way, Exploratory Programming and The Poetic
Computation Reader One relatively minor shortcoming of the work is the lack of any
visualizations or illustrations throughout the book to help the reader conceptualize of the
problems and tutorials that they're working through.

Existing Creative Coding Tools
Similarly, I also surveyed the available tools for creative computation. As tools become more
model-first, they also tend to become less open-source. This makes sense, as the more
model-first tools here require more people to maintain them.

Fig. 11 A qualitative map of existing creative coding frameworks and game engines based on
their qualities of being open/closed-source and procedure/model-first

This again leaves a large quadrant open to new tools, aside from Godot, there aren't many
tools that can exist in the open-source space sustainably. Given how young Godot is, it will be
interesting to see if it can stay in this space, or even thrive. Addressing a gap in tools though is
a much larger undertaking than addressing a relatively unpopulated corner of the landscape
of learning resources.

Finding a Niche
With that understanding of the gaps and underserved areas in existing learning materials for
creative coders, it has been my aim to make a series of tutorials that extend into the model-
first space, and past the beginner level. In this way, I am in essence designing a learning
resource for my past self when I was having difficulty progressing past the beginner level.

Methodology
The Algorithmic Sketchbook
The first iteration of my project was a short series of tutorials / loose musings on creative
coding based on a computational reading of Klee and Kandinsky. Because both artists have a
procedure-first approach to art, I thought that they would be a good window to help other
artists and creatives approach coding.

The poetic way in which Klee would imagine a line as "a dot that went for a walk" loaned a
quality of playfulness to a well-structured framework of expression. Conversely, Kandinsky
had a view of form that seemed much more mathematical and proof driven: "The geometric
point is an invisible thing... Considered in term of substance, it equals zero." Both books have
a fascinating cascade of concepts which arise into comprehensive treaties on the visual
semantics of drawn forms.

However, this iteration was still a procedure-first approach to One of the strengths of starting
from what's simple is that, simple concepts are also generalizable. However, the downside to
generalization is abstraction. This is not to say that simplicity doesn't matter, but rather that
starting from what is simple and abstract can alienate many students.

The most successful part of the project was a live p5 editor which updated programs in real
time, and gave users instant feedback on what they were changing. In testing, the students I
showed the website to were really excited to play around with the examples provided, but still
didn't feel confident in making a p5 sketch from scratch. This is probably due mostly to the
fact that I was still giving readers a procedure-first method of learning, which wasn't helping
them get past the syntax and imperative mindset and into the semantic and systemic
mindset.

Model-First Pong
After my investigation into model-first pedagogy as previously described by Bendeson and
Casperson, I then wrote a pong tutorial based on my findings. The goal was to make the
tutorial non-linear and broken up into modules which were self-similar to a model of a game
of pong: three primary elements (a ball, two paddles, a scoreboard) broken up into their key
properties and behaviors.

Fig. 12 & 13 Screenshots from the Model-First Pong Tutorial

I was hoping that the structure of this tutorial would give readers a much more wholistic and
top-down view of what they were working on. This exact approach had mixed success,
however.

One of the key pieces findings from this iteration was that the tutorials were too non-linear.
Navigationally, many users found it too much of a hassle to go back and forth within the same
tutorial. In addition, this may have done more harm than good in helping them grasp the
relationship between the content in each submodule.

User Feedback
This has led to my current iteration of Grokking Creative Code. Throughout each draft of the
project, the component of live-coding has remained constant, but I feel confident that I have
started to approach an appropriate balance between linear and non-linear tutorial structures
in a model-first framework.

To test these tutorials, I've asked students/learners to first talk through or diagram how they
would go about solving a problem before and after they one of my tutorials on the same
subject. Typically, testers would have an idea of what resources they might look up, or how
they might begin to solve the problem in a higher-level environment like Unity3D, but didn't
know where to begin as far as writing down the code, or what functions/classes they would
write.

After reading the tutorial, the testers would have much more realized ideas of how to solve the
problems I asked them, citing which processes they would use and diagramming out how the
parts of their program would fit together.

For example, before showing a tester a tutorial about frame-independent animation, I asked
them how they would make an animation run at the same speed regardless of the frame rate.
At first, they started to pseudocode out their thoughts: "What if I made a counter? Then
iterated it in the draw loop? And progress the animation based on that counter?" As they
fleshed out this idea, they realized that they were still falling into the pattern of frame-
dependent animation.

Fig. 14 Documentation from user feedback session

Fig. 15 Transcribed Notes from the same user feedback session

A while after the student went through the tutorial, I asked them to conceptualize of the
problem again. This time, they had a clear, step-by-step process of how they would go about
it. Although the way they wrote out their thoughts was not in pseudo-code, it betrayed a more
fundamental understanding of how the problem worked, and how the tools they had (in this
case p5js) could address it.

This shift in thinking through the problem was an encouraging initial finding, and one I would
like to be able to replicate in future lessons.

Evaluation
Going forward, I want to keep building out this body of tutorials that I have begun to sow. I
have started laying the bricks for what is to come, but the final result is still somewhat
uncertain, pending future user testing of what explanations make sense, and how non-linear I
can make the flow of the lessons while still making them navigable. These are at least the two
challenges that I can see going forward as I continue to foster this book.

Future Milestones
A year out from now, I expect to have reached a point of saturation with this body of work. By
then, the Space section should provide a good overview of linear algebra (or at least a good
visual intuition for it). This would impart concepts in 2D and 3D animation by digging deeper
into the mechanics of vector and matrix math.

 The Time section will be able to help a reader make their own animation library for p5.js. This
progression is inspired from the structure of Zach's Algorithmic Animation course as he
described it to me in our office hours meeting. His class was intended to teach students
techniques for animating with code, and over time helping those techniques coalesce into a
full library that the students could re-use or share.

The Form section will give readers a general understanding of Model-View-Control structures
of code and some design patterns. This will be the section of the book most focused on
helping the reader understand the wider context of systemic reasoning in programming by
helping the reader model larger programs which manage multiple discrete tasks or sub-tasks.

I will also have a better idea as to which way to take my tutorials in terms of demographics.
Although it should be possible to continue to drive the difficulty level up to more advanced
topics, its also feasible to curb-cut the difficulty down to a neophyte reader. Both options offer
compelling challenges, but it may be a more worthwhile test of the model-first paradigm to
see how it makes contact with a complete beginner who has not yet internalized the syntax of
any programming language.

As I reach these milestones, I also plan on making the tutorials a bit more non-linear, letting
readers explore asides and footnotes laterally based on their curiosity. For example, since
many of the Space tutorials will incorporate linear algebra, it might be a good idea to make
independent pages about vector maths. These pages can be linked to from tutorial pages that

touch upon these concepts so that the reader may establish or refresh their understanding of
the content.

Fig. 16 Intended workflow of the Grokking Creative Code Website when it is complete

After reaching this milestone, I will be able to distill and synthesize some as-yet-unknown key
takeaways to apply to my next goal: Creating a model-first tool for creative coding which can
be sustainably open-sourced.

A Truly Model-First Framework
As pointed out earlier, there are already model-first tools for creative coders. However, these
tools are all proprietary and closed-source, the notable exception being Godot*.

Fig. 11 A qualitative map of existing creative coding frameworks and game engines based on
their qualities of being open/closed-source and procedure/model-first

In short, my goal for now is to use what I have learned from teaching and writing to make a
tool informed by those pedagogies. And as it looks now, that tool or framework which will be
derived from this project will probably inhabit that space. This is because I do not find it
satisfactory for a tool to be model-first without being open-source. Although model first tools
should start from direct manipulation and chunking of information, they must also make the
user curious, and encourage them to explore into the the inner workings of the tool that they
are using. This simply isn't possible if the source code is unavailable.

Because of this, I want to use what I have and will learn from this project to make a new tool
to contribute to the space of model-first and open-source frameworks for creative coding.

To fund the initial production of this endeavor, I will be seeking out a fellowship or arts
residency at organizations like Eyebeam, the Mozilla Foundation, or the Processing
Foundation. These organizations are all attractive possibilities for their values of being open-
source, inclusion-minded, and often creativity-focused.

Conclusion
From my initial research through to my initial testing of tutorials, it is apparent to me that the
Model-First approach will gradually become the new standard, if not the progenitor of a new
emerging standard of programming education for learners with goals outside of an
engineering or computer science program. While an engineering mindset has its utility, it also
has its time and place.

In Creative Coding, problems often do not share an impetus or a size of scope in tandem with
the more commercially common forms of development. Because of this, approaching a
creative coding problem with an engineering mindset can even be detrimental to the project,
letting the developer over-architect and over-scale their work before they even start.

Additionally, Creative Coding is not just about making products, although its certainly allowed
to be. Creative Coding as a form of expression is also about opening up the world

The world outside of proper computer science is both vast and varied, and the programming
resources available should reflect that. It is my desire to continue to contribute to this frontier,
further enriching the space of creative coding.

*Of course, in the time it will take for me to reach my intended inflection point, Unity or the Unreal Engine could
surprise me and become open-sourced. Godot could also take off in popularity and become wildly successful
without moving to a proprietary model. There could also be an entirely new agent which is introduced to this
field which is everything I would have been aiming to make.

Works Cited
 “2: How Experts Differ from Novices.” How People Learn: Brain, Mind, Experience, and School,
by John D. Bransford, National Acad. Press, 2004.

 Barth, Zach. “Zachtronics.” Zachtronics, www.zachtronics.com/.

 Bennedsen, Jens, and Michael E. Caspersen. “Programming in Context – A Model-First
Approach to CS1 .” Association for Computing Machinery, 3 Mar. 2004, www.cs.au.dk/~mec/
publications/conference/08--sigcse2004.pdf.

 “About.” Codecademy, www.codecademy.com/about.

 Gonzalez Vivo, Patricio. “The Book of Shaders.” The Book of Shaders, thebookofshaders.com/.

 Hickey, Rich. “Simple Made Easy.” InfoQ, www.infoq.com/presentations/Simple-Made-Easy.

 Flick, Jasper. “Unity C# and Shader Tutorials.” Catlike Coding, catlikecoding.com/unity/
tutorials/.

 Klee, Paul, and Sibyl Moholy-Nagy. Pedagogical Sketchbook. Faber and Faber, 1981.

 Montfort, Nick. Exploratory Programming for the Arts and Humanities. The MIT Press, 2016.

 Jackson, Daniel, and Rob Miller. “A New Approach to Teaching Programming.” Psychology of
Programming Interest Group, vol. 18, 2006, pp. 255–265., pdfs.semanticscholar.org/1c75/
fd0b1815ec77995aa3ed9da6b180bf1eb78e.pdf.

 Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. Basicbooks, 1980.

 Reas, Casey. “Thoughts on Software for the Visual Arts – Processing Foundation – Medium.”
Medium, Processing Foundation, 1 Feb. 2017, medium.com/processing-foundation/thoughts-
on-software-a8a82c95e1ad.

 Sajaniemi, Jorma, and Chenglie Hu. “Teaching Programming: Going beyond ‘Objects First.’”
Psychology of Programming Interest Group, vol. 18, Sept. 2006, pdfs.semanticscholar.org/
1c75/fd0b1815ec77995aa3ed9da6b180bf1eb78e.pdf.  

 Shehane, Ronald, and Steven Sherman. “Visual Teaching Model for Introducing Programming
Languages.” Journal of Instructional Pedagogy, vol. 14, Mar. 2014, files.eric.ed.gov/fulltext/
EJ1060073.pdf.

 Shiffman, Daniel. “The Coding Train.” YouTube, YouTube, www.youtube.com/user/shiffman.

 Vihart. “Doodling in Math Class: DRAGONS.” YouTube, YouTube, 19 Aug. 2013,
www.youtube.com/watch?v=EdyociU35u8.

Appendix
Website Pages

